首页> 外文OA文献 >On the derivation of a high-velocity tail from the Boltzmann-Fokker-Planck equation for shear flow
【2h】

On the derivation of a high-velocity tail from the Boltzmann-Fokker-Planck equation for shear flow

机译:关于从高速尾部推导出高速尾翼   Boltzmann-Fokker-planck剪切流动方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Uniform shear flow is a paradigmatic example of a nonequilibrium fluid stateexhibiting non-Newtonian behavior. It is characterized by uniform density andtemperature and a linear velocity profile $U_x(y)=a y$, where $a$ is theconstant shear rate. In the case of a rarefied gas, all the relevant physicalinformation is represented by the one-particle velocity distribution function$f({\bf r},{\bf v})=f({\bf V})$, with ${\bf V}\equiv {\bf v}-{\bf U}({\bf r})$,which satisfies the standard nonlinear integro-differential Boltzmann equation.We have studied this state for a two-dimensional gas of Maxwell molecules withgrazing collisions in which the nonlinear Boltzmann collision operator reducesto a Fokker-Planck operator. We have found analytically that for shear rateslarger than a certain threshold value the velocity distribution functionexhibits an algebraic high-velocity tail of the form $f({\bf V};a)\sim |{\bfV}|^{-4-\sigma(a)}\Phi(\phi; a)$, where $\phi\equiv \tan V_y/V_x$ and theangular distribution function $\Phi(\phi; a)$ is the solution of a modifiedMathieu equation. The enforcement of the periodicity condition $\Phi(\phi;a)=\Phi(\phi+\pi; a)$ allows one to obtain the exponent $\sigma(a)$ as afunction of the shear rate. As a consequence of this power-law decay, all thevelocity moments of a degree equal to or larger than $2+\sigma(a)$ aredivergent. In the high-velocity domain the velocity distribution is highlyanisotropic, with the angular distribution sharply concentrated around apreferred orientation angle which rotates counterclock-wise as the shear rateincreases.
机译:均匀的剪切流是表现出非牛顿行为的非平衡流体状态的典型例子。它的特点是密度和温度均匀,线速度曲线$ U_x(y)= a y $,其中$ a $是恒定剪切速率。在稀有气体的情况下,所有相关物理信息都由一个粒子速度分布函数$ f({\ bf r},{\ bf v})= f({\ bf V})$表示,其中$ {\ bf V} \ equiv {\ bf v}-{\ bf U}({\ bf r})$,它满足标准非线性积分微分玻尔兹曼方程。我们研究了二维气体的这种状态麦克斯韦分子具有放牧碰撞,其中非线性玻尔兹曼碰撞算子降为福克-普朗克算子。从分析上我们发现,对于大于某个阈值的剪切速率,速度分布函数表现为形式为$ f({\ bf V}; a)\ sim | {\ bfV} | ^ {-4-的代数高速尾\ sigma(a)} \ Phi(\ phi; a)$,其中$ \ phi \ equiv \ tan V_y / V_x $和角度分布函数$ \ Phi(\ phi; a)$是修改后的Mathieu方程的解。周期性条件$ \ Phi(\ a)= \ Phi(\ phi + \ pi; a)$的实施允许获得作为剪切速率函数的指数$ \ sigma(a)$。由于该幂律衰减,所有等于或大于$ 2 + \ sigma(a)$的速度矩都是发散的。在高速域中,速度分布是高度各向异性的,角度分布急剧集中在适当的定向角附近,该定向角随着剪切速率的增加而逆时针旋转。

著录项

  • 作者单位
  • 年度 2002
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号